Weblog Tomasza Przechlewskiego [Zdjęcie T. Przechlewskiego]


scrum
random image [Photo gallery]
Zestawienie tagów
1-wire | 18b20 | 1wire | 2140 | 3rz | adamowicz | afera | alsamixer | amazon | amber | amman | anniversary | antypis | apache | api | applebaum | arm | armenia | astronomy | asus | atom.xml | awk | aws | bachotek | bakłażan | balcerowicz | balta | banan | bash | batumi | berlin | białowieża | białystok | bibtex | bieszczady | biznes | blogger | blogging | blosxom | bme280 | bono | borne-sulinowo | breugel | bt747 | budapeszt | budyniowo | budyń | bursztyn | campagnolo | canon | cedewu | chaos | chello | chiller | chillerpl | chown | christophe dominici | chujowetaśmy | ciasto | cmentarz | contour | coronavirus | covi19 | covid | covid19 | cron | css | csv | cukinia | curl | cycling | d54250wykh | darkages | dbi | debian | dejavu | dhcp | dht22 | dia | docbook | dom | dp1500 | ds18b20 | duda | dulkiewicz | dulkiewiczowa | dyndns | dynia | ebay | economy | ecowitt | ekonomia | elka | elm | emacs | emacs23 | english | ep | erasmus | erasmusplus | ess | eu | eurostat | excel | exif | exiftool | f11 | fc | fc11 | fc15 | fc29 | fc5 | fc8 | fedora | fedora21 | fenix | ffmpeg | finepix | firefox | flickr | folau | fontforge | fontspec | fonty | food | fop | forms | foto | france | francja | fripp | froggit | fuczki | fuji | fuse | gammu | garden | garmin | gas | gawk | gazwyb | gdańsk | gdynia | gender | geo | geocoding | georgia | gft | ggplot | ghost | git | github | gmail | gmaps | gnokii | gnus | google | google apps script | googlecl | googleearth | googlemaps | gotowanie | gphoto | gphoto2 | gps | gpsbabel | gpsphoto | gpx | gpx-viewer | greasemonkey | gruzja | grzyby | gus | gw1000 | haldaemon | handbrake | hhi | historia | history | hitler | holocaust | holokaust | hp1000se | hpmini | humour | iblue747 | ical | iiyama | ikea | imagemagick | imap | inkscape | inne | internet | j10i2 | javascript | jhead | jordania | k800i | kajak | kamera | karob | kibbeh | kleinertest | kml | kmobiletools | knuth | kociewie kołem | kod | kolibki | komorowski | konwersja | krutynia | krynki | kuchnia | kurski | kłamstwo | latex | latex2rtf | latex3 | lcd | legend | lenny | lesund | lewactwo | lgbt-folly | liban | liberation | linksys | linux | lisp | lisrel | litwa | lizbona | logika | ltr | lubowla | lwp | lwów | m2wś | malta | mapquest | mapsource | maradona | marchew | marimekko | marvell | math | mathjax | mazury | mbank | mediolan | mencoder | mevo | mex | mh17 | michalak | michlmayr | microsoft | monitor | mp4box | mplayer | ms | msc | mssql | msw | mswindows | mtkbabel | museum | muzyka | mymaps | mysql | mz | nafisa | nanopi | natbib | navin | neapol | nekrolog | neo | neopi | netbook | niemcy | niemieckie zbrodnie | nikon | nmea | nowazelandia | nuc | nxml | oauth | oauth2 | obituary | ocr | odessa | okular | olympus | ooffice | ooxml | opera | osm | otf | otftotfm | other | ov5647 | overclocking | ozbekiston | padwa | panoramio | paryż | pdf | pdfpages | pdftex | pdftk | pedophilia | perl | photo | photography | pi | picasa | picasaweb | pim | pine | pis | pit | pizero | plain | plotly | pls | plugin | po | podcast | podlasie | podróże | pogoda | politics | polityka | polsat | portugalia | postęp | powerpoint | połtawa | prelink | problem | propaganda | pseudointeligencja | pstoedit | putin | python | pywws | r | r1984 | radio | random | raspberry | raspberry pi | raspberrypi | raspbian | refugees | relaxng | ridley | router | rower | rowery | roztocze | rpi | rsync | rtf | ruby | rugby | rumunia | russia | rwc | rwc2007 | rwc2011 | rwc2019 | rzym | salerno | samba | sds011 | selenium | sem | senah | sernik | sheevaplug | sienkiewicz | signature | sikorski | sks | skype | skytraq | smoleńsk | sqlite | srtm | sshfs | ssl | staszek wawrykiewicz | statistcs | statistics | stats | statystyka | stix | stretch | supraśl | suwałki | svg | svn | swanetia | swornegacie | szwajcaria | słowacja | tbilisi | terrorism | tesseract | tex | texgyre | texlive | thunderbird | tomato | totalnaopozycja | tourism | tramp | trang | transylwania | truetype | trzaskowski | ttf | turcja | turkey | turystyka | tusk | tv | tv5monde | tweepy | twitter | tykocin | typetools | ubuntu | uchodźcy | udev | ue | ukraina | umap | unix | upc | updmap | ups | utf8 | uzbekistan | varia | video | vienna | virb edit | virbedit | vostro | wammu | wdc | wdfs | weather | weathercloud | webcam | webdav | webscrapping | weewx | wenecja | wh2080 | wiedeń | wikicommons | wilno | win10 | windows | windows8 | wine | wioślarstwo | wojna | word | wordpress | wrt54gl | ws1080 | wtyczka | wunderground | ww2 | www | wybory | wybory2015 | włochy | węgry | xemex | xetex | xft | xhtml | xine | xml | xmllint | xsd | xslt | xvidtune | youtube | yum | zaatar | zakopane | zakupy | zawodzie | zdf | zdrowie | zeropi | zgarden | zgony | zprojekt | łeba | świdnica | żywność
Archiwum
02/2023 | 01/2023 | 11/2022 | 10/2022 | 09/2022 | 07/2022 | 06/2022 | 04/2022 | 03/2022 | 02/2022 | 12/2021 | 09/2021 | 03/2021 | 01/2021 | 12/2020 | 11/2020 | 10/2020 | 09/2020 | 08/2020 | 07/2020 | 04/2020 | 03/2020 | 02/2020 | 01/2020 | 12/2019 | 11/2019 | 10/2019 | 09/2019 | 08/2019 | 07/2019 | 06/2019 | 04/2019 | 02/2019 | 01/2019 | 12/2018 | 11/2018 | 10/2018 | 09/2018 | 08/2018 | 07/2018 | 05/2018 | 04/2018 | 03/2018 | 02/2018 | 01/2018 | 11/2017 | 10/2017 | 09/2017 | 08/2017 | 07/2017 | 06/2017 | 05/2017 | 04/2017 | 03/2017 | 02/2017 | 01/2017 | 12/2016 | 11/2016 | 10/2016 | 09/2016 | 08/2016 | 06/2016 | 05/2016 | 04/2016 | 02/2016 | 12/2015 | 11/2015 | 09/2015 | 07/2015 | 06/2015 | 05/2015 | 02/2015 | 01/2015 | 12/2014 | 09/2014 | 07/2014 | 06/2014 | 04/2014 | 02/2014 | 01/2014 | 12/2013 | 11/2013 | 10/2013 | 09/2013 | 08/2013 | 07/2013 | 05/2013 | 04/2013 | 03/2013 | 02/2013 | 01/2013 | 12/2012 | 11/2012 | 10/2012 | 09/2012 | 08/2012 | 07/2012 | 05/2012 | 03/2012 | 02/2012 | 01/2012 | 12/2011 | 11/2011 | 10/2011 | 09/2011 | 08/2011 | 07/2011 | 06/2011 | 05/2011 | 04/2011 | 03/2011 | 02/2011 | 01/2011 | 12/2010 | 11/2010 | 10/2010 | 09/2010 | 08/2010 | 07/2010 | 06/2010 | 05/2010 | 04/2010 | 03/2010 | 02/2010 | 01/2010 | 12/2009 | 11/2009 | 10/2009 | 09/2009 | 08/2009 | 07/2009 | 06/2009 | 05/2009 | 04/2009 | 03/2009 | 02/2009 | 01/2009 | 12/2008 | 11/2008 | 10/2008 | 09/2008 | 08/2008 | 07/2008 | 06/2008 | 05/2008 | 04/2008 | 03/2008 | 02/2008 | 01/2008 | 12/2007 | 11/2007 | 10/2007 | 09/2007 | 08/2007 | 07/2007 |
O stronie
wykorzystywany jest blosxom plus następujące wtyczki: tagging, flatarchives, rss10, lastbuilddatexhtmlmime. Niektóre musiałem dopasować nieco do swoich potrzeb. Więcej o blosxom jest tutaj
Subskrypcja
RSS 1.0
Wybory 2014 i jeszcze więcej rozkładów

Rozkład odsetka głosów nieważnych (definiowanego jako głosy nieważne / (głosy ważne + nieważne)) w wyborach samorządowych w 2014. Pierwszy histogram dotyczy całej Polski (27455 komisji), drugi województwa pomorskiego (1856) a trzeci Mazowieckiego (3574).

#!/usr/bin/Rscript
# Skrypt wykreśla histogramy dla danych z pliku ws2014_komisje.csv
# (więcej: https://github.com/hrpunio/Data/tree/master/ws2014_pobranie_2018)
#
par(ps=6,cex=1,cex.axis=1,cex.lab=1,cex.main=1.2)
komisje <- read.csv("ws2014_komisje.csv", sep = ';',
       header=T, na.string="NA");

komisje$ogn <- komisje$glosyNiewazne  / (komisje$glosy + komisje$glosyNiewazne) * 100;

summary(komisje$glosyNiewazne); fivenum(komisje$glosyNiewazne);
sX <- summary(komisje$ogn);
sF <- fivenum(komisje$ogn);
sV <- sd(komisje$ogn, na.rm=TRUE)
skewness <- 3 * (sX[["Mean"]] - sX[["Median"]])/sV

summary_label <- sprintf ("Śr = %.1f\nMe = %.1f\nq1 = %.1f\nq3 = %.1f\nW = %.2f", 
  sX[["Mean"]], sX[["Median"]], sX[["1st Qu."]], sX[["3rd Qu."]], skewness)

## ##
kpN <- seq(0, 100, by=2);
kpX <- c(0, 10,20,30,40,50,60,70,80,90, 100);
nn <- nrow(komisje)

h <- hist(komisje$ogn, breaks=kpN, freq=TRUE,
   col="orange", main=sprintf ("Rozkład odsetka głosów nieważnych\nPolska ogółem %i komisji", nn), 
   ylab="%", xlab="% nieważne", labels=F, xaxt='n' )
   axis(side=1, at=kpN, cex.axis=2, cex.lab=2)
   posX <- .5 * max(h$counts)
text(80, posX, summary_label, cex=1.4, adj=c(0,1))

## ##
komisje$woj <- substr(komisje$teryt, start=1, stop=2)

komisjeW <- subset (komisje, woj == "22"); ## pomorskie
nn <- nrow(komisjeW)
sX <- summary(komisjeW$ogn); sF <- fivenum(komisjeW$ogn);
sV <- sd(komisjeW$ogn, na.rm=TRUE)
skewness <- 3 * (sX[["Mean"]] - sX[["Median"]])/sV

summary_label <- sprintf ("Śr = %.1f\nMe = %.1f\nq1 = %.1f\nq3 = %.1f\nW = %.2f", 
  sX[["Mean"]], sX[["Median"]], sX[["1st Qu."]], sX[["3rd Qu."]], skewness)

h <- hist(komisjeW$ogn, breaks=kpN, freq=TRUE,
   col="orange", main=sprintf("Rozkład odsetka głosów nieważnych\nPomorskie %i komisji", nn), 
   ylab="%", xlab="% nieważne", labels=T, xaxt='n' )
   axis(side=1, at=kpX, cex.axis=2, cex.lab=2)
   posX <- .5 * max(h$counts)
text(80, posX, summary_label, cex=1.4, adj=c(0,1))

komisjeW <- subset (komisje, woj == "14"); ## mazowieckie
nn <- nrow(komisjeW)
sX <- summary(komisjeW$ogn); sF <- fivenum(komisjeW$ogn);
sV <- sd(komisjeW$ogn, na.rm=TRUE)
skewness <- 3 * (sX[["Mean"]] - sX[["Median"]])/sV

summary_label <- sprintf ("Śr = %.1f\nMe = %.1f\nq1 = %.1f\nq3 = %.1f\nW = %.2f", 
  sX[["Mean"]], sX[["Median"]], sX[["1st Qu."]], sX[["3rd Qu."]], skewness)

h <- hist(komisjeW$ogn, breaks=kpN, freq=TRUE,
   col="orange", main=sprintf("Rozkład odsetka głosów nieważnych\nMazowieckie %i komisji", nn), 
   ylab="%", xlab="% nieważne", labels=T, xaxt='n' )
   axis(side=1, at=kpX, cex.axis=2, cex.lab=2)
   posX <- .5 * max(h$counts)
text(80, posX, summary_label, cex=1.4, adj=c(0,1))

Wyniki są takie oto (indywidualne wykresy tutaj: #01 #02 #03):

Rozkłady odsetka poparcia dla PSL/PiS/PO w wyborach samorządowych w 2014 w całej Polsce, w miastach/poza miastami oraz w poszczególnych województwach. Poniższy skrypt generuje łącznie 60 wykresów słupkowych:

#!/usr/bin/Rscript
# Skrypt wykreślna różnego rodzaju histogramy dla danych z pliku ws2014_komitety_by_komisja_T.csv
# (więcej: https://github.com/hrpunio/Data/tree/master/ws2014_pobranie_2018)
#
showVotes <- function(df, x, co, region, N, minN) {
   ## showVotes = wykreśla histogram dla województwa (region)
   kN <- nrow(df)
   sX <- summary(df[[x]], na.rm=TRUE);
   sV <- sd(df[[x]], na.rm=TRUE)
   ## współczynnik skośności Pearsona
   skewness <- 3 * (sX[["Mean"]] - sX[["Median"]])/sV

   summary_label <- sprintf ("Śr = %.1f\nMe = %.1f\nq1 = %.1f\nq3 = %.1f\nS = %.1f\nW = %.2f", 
     sX[["Mean"]], sX[["Median"]],
     sX[["1st Qu."]], sX[["3rd Qu."]], sV, skewness)

   if (minN < 1) {
   t <- sprintf("Rozkład głosów na %s\n%s ogółem %d komisji", co, region, kN ) } 
   else { t <- sprintf("Rozkład głosów za %s\n%s ogółem %d komisji (N>%d)", co, region, kN, minN ) } 

   h <- hist(df[[x]], breaks=kpN, freq=TRUE, col="orange", main=t, 
     ylab="%", xlab="% poparcia", labels=F, xaxt='n' )
     axis(side=1, at=kpN, cex.axis=2, cex.lab=2)
   ## pozycja tekstu zawierającego statystyki opisowe
   posX <- .5 * max(h$counts)
   text(80, posX, summary_label, cex=1.4, adj=c(0,1))
}

## Wczytanie danych; obliczenie podst. statystyk:
komisje <- read.csv("ws2014_komitety_by_komisja_T.csv", 
   sep = ';', header=T, na.string="NA");

komisje$ogn <- komisje$glosyNiewazne  / (komisje$glosy 
   + komisje$glosyNiewazne) * 100;

summary(komisje$PSL); summary(komisje$PiS); summary(komisje$PO);
fivenum(komisje$PSLp); fivenum(komisje$PiSp); fivenum(komisje$POp);

## ## ###
par(ps=6,cex=1,cex.axis=1,cex.lab=1,cex.main=1.2)
kpN <- seq(0, 100, by=2);
kpX <- c(0, 10,20,30,40,50,60,70,80,90, 100);
kN <- nrow(komisje)
region <- "Polska"
minTurnout <- 0

## cała Polska:
showVotes(komisje, "PSLp", "PSL", region, kN, minTurnout);
showVotes(komisje, "PiSp", "PiS", region, kN, minTurnout);
showVotes(komisje, "POp",  "PO",  region, kN, minTurnout);

## Cała Polska (bez małych komisji):
## ( późniejszych analizach pomijane są małe komisje)
minTurnout <- 49
komisje <- subset (komisje, glosyLK > minTurnout); 
kN <- nrow(komisje)

showVotes(komisje, "PSLp", "PSL", region, kN, minTurnout);
showVotes(komisje, "PiSp", "PiS", region, kN, minTurnout);
showVotes(komisje, "POp",  "PO",  region, kN, minTurnout);

## Typ gminy U/R (U=gmina miejska ; R=inna niż miejska)
komisjeW <- subset (komisje, typ == "U"); 
kN <- nrow(komisjeW)
region <- "Polska/g.miejskie"
showVotes(komisjeW, "PSLp", "PSL", region, kN, minTurnout);
showVotes(komisjeW, "PiSp", "PiS", region, kN, minTurnout);
showVotes(komisjeW, "POp",  "PO",  region, kN, minTurnout);

komisjeW <- subset (komisje, typ == "R"); 
kN <- nrow(komisjeW)
region <- "Polska/g.niemiejskie"
showVotes(komisjeW, "PSLp", "PSL", region, kN, minTurnout);
showVotes(komisjeW, "PiSp", "PiS", region, kN, minTurnout);
showVotes(komisjeW, "POp",  "PO",  region, kN, minTurnout);

## woj = dwucyfrowy kod teryt województwa:
komisje$woj <- substr(komisje$teryt, start=1, stop=2)

cN <- c("dolnośląskie", "dolnośląskie", "kujawsko-pomorskie",
 "lubelskie", "lubuskie", "łódzkie", "małopolskie", "mazowieckie",
 "opolskie", "podkarpackie", "podlaskie", "pomorskie", "śląskie",
 "świętokrzyskie", "warmińsko-mazurskie", "wielkopolskie",
 "zachodniopomorskie");
cW <- c("02", "04", "06", "08", "10", "12", "14", "16", "18",
 "20", "22", "24", "26", "28", "30", "32");

## wszystkie województwa po kolei:
for (w in 1:16) {
  wojS <- cW[w]
  ###region <- cN[w];
  region <- sprintf ("%s (%s)", cN[w], wojS);

  komisjeW <- subset (komisje, woj == wojS); ##

  showVotes(komisjeW, "PSLp", "PSL", region, kN, minTurnout);
  showVotes(komisjeW, "PiSp", "PiS", region, kN, minTurnout);
  showVotes(komisjeW, "POp",  "PO",  region, kN, minTurnout);
}
## ## koniec

Dla całej Polski wyniki są następujące:

Indywidualne wykresy zaś tutaj: #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32 #33 #34 #35 #36 #37 #38 #39 #40 #41 #42 #43 #44 #45 #46 #47 #48 #49 #50 #51 #52 #53 #54 #55 #56 #57 #58 #59 #60):

url | Tue, 02/10/2018 17:08 | tagi: , , ,