Weblog Tomasza Przechlewskiego [Zdjęcie T. Przechlewskiego]


scrum
random image [Photo gallery]
Zestawienie tagów
1-wire | 18b20 | 1wire | 2140 | 3rz | adamowicz | afera | alsamixer | amazon | amber | amman | anniversary | antypis | apache | api | applebaum | arm | armenia | astronomy | asus | atom.xml | awk | aws | bachotek | bakłażan | balcerowicz | balta | banan | bash | batumi | berlin | białowieża | białystok | bibtex | bieszczady | birzeit | biznes | blogger | blogging | blosxom | bme280 | bono | borne-sulinowo | breugel | bt747 | budapeszt | budyniowo | budyń | bursztyn | campagnolo | canon | cedewu | chaos | chello | chiller | chillerpl | chown | christophe dominici | chujowetaśmy | ciasto | cmentarz | contour | coronavirus | covi19 | covid | covid19 | cron | css | csv | cukinia | curl | cycling | d54250wykh | darkages | dbi | debian | dejavu | dhcp | dht22 | dia | docbook | dom | dp1500 | ds18b20 | duda | dulkiewicz | dulkiewiczowa | dyndns | dynia | ebay | economy | ecowitt | ekonomia | elka | elm | emacs | emacs23 | english | ep | erasmus | erasmusplus | ess | eu | eurostat | excel | exif | exiftool | f11 | fc | fc11 | fc15 | fc29 | fc5 | fc8 | fedora | fedora21 | fenix | ffmpeg | finepix | firefox | flickr | folau | fontforge | fontspec | fonty | food | fop | forms | foto | france | francja | fripp | froggit | fuczki | fuji | fuse | gammu | garden | garmin | gas | gawk | gazwyb | gdańsk | gdynia | gender | geo | geocoding | georgia | gft | ggplot | ghost | git | github | gmail | gmaps | gnokii | gnus | google | google apps script | googlecl | googleearth | googlemaps | gotowanie | gphoto | gphoto2 | gps | gpsbabel | gpsphoto | gpx | gpx-viewer | greasemonkey | gruzja | grzyby | gus | gw1000 | haldaemon | handbrake | helsinki | hhi | historia | history | hitler | holocaust | holokaust | hp1000se | hpmini | humour | iblue747 | ical | iiyama | ikea | imagemagick | imap | inkscape | inne | internet | j10i2 | javascript | jhead | jifna | jordania | k800i | kajak | kamera | karob | kibbeh | kleinertest | kml | kmobiletools | knuth | kociewie kołem | kod | kolibki | komorowski | konwersja | krutynia | krynki | kuchnia | kurski | kłamstwo | latex | latex2rtf | latex3 | lcd | legend | lenny | lesund | lewactwo | lgbt-folly | liban | liberation | linksys | linux | lisp | lisrel | litwa | lizbona | logika | ltr | lubowla | lwp | lwów | m2wś | malta | mapquest | mapsource | maradona | marchew | marimekko | marvell | math | mathjax | mazury | mbank | mediolan | mencoder | mevo | mex | mh17 | michalak | michlmayr | microsoft | monitor | mp4box | mplayer | ms | msc | mssql | msw | mswindows | mtkbabel | museum | muzyka | mymaps | mysql | mz | nafisa | nanopi | natbib | navin | neapol | nekrolog | neo | neopi | netbook | niemcy | niemieckie zbrodnie | nikon | nmea | nowazelandia | nuc | nxml | oauth | oauth2 | obituary | ocr | odessa | okular | olympus | ooffice | ooxml | opera | osm | otf | otftotfm | other | ov5647 | overclocking | ozbekiston | padwa | palestyna | panoramio | paryż | pdf | pdfpages | pdftex | pdftk | pedophilia | perl | photo | photography | pi | picasa | picasaweb | pim | pine | pis | pit | pizero | plain | plotly | pls | plugin | po | podcast | podlasie | podróże | pogoda | politics | polityka | polsat | portugalia | postęp | powerpoint | połtawa | prelink | problem | propaganda | pseudointeligencja | pstoedit | putin | python | pywws | r | r1984 | radio | random | raspberry | raspberry pi | raspberrypi | raspbian | refugees | relaxng | ridley | router | rower | rowery | roztocze | rpi | rsync | rtf | ruby | rugby | rumunia | russia | rwc | rwc2007 | rwc2011 | rwc2019 | ryga | rzym | salerno | samba | sds011 | selenium | sem | senah | sernik | sheevaplug | sienkiewicz | signature | sikorski | sks | skype | skytraq | smoleńsk | sqlite | srtm | sshfs | ssl | staszek wawrykiewicz | statistcs | statistics | stats | statystyka | stix | stretch | supraśl | suwałki | svg | svn | swanetia | swornegacie | szwajcaria | słowacja | tallin | tbilisi | terrorism | tesseract | tex | texgyre | texlive | thunderbird | tomato | totalnaopozycja | tourism | tramp | trang | transylwania | truetype | trzaskowski | ttf | turcja | turkey | turystyka | tusk | tv | tv5monde | tweepy | twitter | tykocin | typetools | ubuntu | uchodźcy | udev | ue | ukraina | umap | unix | upc | updmap | ups | utf8 | uzbekistan | varia | video | vienna | virb edit | virbedit | vostro | wammu | wdc | wdfs | weather | weathercloud | webcam | webdav | webscrapping | weewx | wenecja | wh2080 | wiedeń | wikicommons | wilno | win10 | windows | windows8 | wine | wioślarstwo | wojna | word | wordpress | wrt54gl | ws1080 | wtyczka | wunderground | ww2 | www | wybory | wybory2015 | włochy | węgry | xemex | xetex | xft | xhtml | xine | xml | xmllint | xsd | xslt | xvidtune | youtube | yum | zaatar | zakopane | zakupy | zawodzie | zdf | zdrowie | zeropi | zgarden | zgony | zprojekt | łeba | łotwa | świdnica | żywność
Archiwum
06/2023 | 02/2023 | 01/2023 | 11/2022 | 10/2022 | 09/2022 | 07/2022 | 06/2022 | 04/2022 | 03/2022 | 02/2022 | 12/2021 | 09/2021 | 03/2021 | 01/2021 | 12/2020 | 11/2020 | 10/2020 | 09/2020 | 08/2020 | 07/2020 | 04/2020 | 03/2020 | 02/2020 | 01/2020 | 12/2019 | 11/2019 | 10/2019 | 09/2019 | 08/2019 | 07/2019 | 06/2019 | 04/2019 | 02/2019 | 01/2019 | 12/2018 | 11/2018 | 10/2018 | 09/2018 | 08/2018 | 07/2018 | 05/2018 | 04/2018 | 03/2018 | 02/2018 | 01/2018 | 11/2017 | 10/2017 | 09/2017 | 08/2017 | 07/2017 | 06/2017 | 05/2017 | 04/2017 | 03/2017 | 02/2017 | 01/2017 | 12/2016 | 11/2016 | 10/2016 | 09/2016 | 08/2016 | 06/2016 | 05/2016 | 04/2016 | 02/2016 | 12/2015 | 11/2015 | 09/2015 | 07/2015 | 06/2015 | 05/2015 | 02/2015 | 01/2015 | 12/2014 | 09/2014 | 07/2014 | 06/2014 | 04/2014 | 02/2014 | 01/2014 | 12/2013 | 11/2013 | 10/2013 | 09/2013 | 08/2013 | 07/2013 | 05/2013 | 04/2013 | 03/2013 | 02/2013 | 01/2013 | 12/2012 | 11/2012 | 10/2012 | 09/2012 | 08/2012 | 07/2012 | 05/2012 | 03/2012 | 02/2012 | 01/2012 | 12/2011 | 11/2011 | 10/2011 | 09/2011 | 08/2011 | 07/2011 | 06/2011 | 05/2011 | 04/2011 | 03/2011 | 02/2011 | 01/2011 | 12/2010 | 11/2010 | 10/2010 | 09/2010 | 08/2010 | 07/2010 | 06/2010 | 05/2010 | 04/2010 | 03/2010 | 02/2010 | 01/2010 | 12/2009 | 11/2009 | 10/2009 | 09/2009 | 08/2009 | 07/2009 | 06/2009 | 05/2009 | 04/2009 | 03/2009 | 02/2009 | 01/2009 | 12/2008 | 11/2008 | 10/2008 | 09/2008 | 08/2008 | 07/2008 | 06/2008 | 05/2008 | 04/2008 | 03/2008 | 02/2008 | 01/2008 | 12/2007 | 11/2007 | 10/2007 | 09/2007 | 08/2007 | 07/2007 |
O stronie
wykorzystywany jest blosxom plus następujące wtyczki: tagging, flatarchives, rss10, lastbuilddatexhtmlmime. Niektóre musiałem dopasować nieco do swoich potrzeb. Więcej o blosxom jest tutaj
Subskrypcja
RSS 1.0
Tygodniowe dane nt. zgonów z GUS






GUS się wychylił niespodziewanie z dużą paczką danych nt. zgonów. Dane są tygodniowe, w podziale na płcie, regiony w klasyfikacji NUTS oraz 5 letnie grupy wiekowe.

Dane są udostępnione w formacie XSLX w dość niepraktycznej z punktu widzenia przetwarzania strukturze (kolumny to tygodnie/wiersze to różne kategorie agregacji: płeć, wiek, region), który zamieniłem na CSV o następującej prostej 7 kolumnowej strukturze:

year;sex;week;date;age;geo;value

W miarę oczywiste jest, że year to rok, sex to płeć, week to numer tygodnia, date to data pierwszego dnia tygodnia (poniedziałek), geo to identyfikator obszaru a value liczba zgonów odpowiadająca kolumn 1--6. Ten plik jest podzielony na lata bo w całości zajmuje circa 200Mb. Umieściłem go tutaj.

Skrypt też w R wymodziłem co wizualizuje zgony wg grup wieku oraz województw. Ponieważ kombinacji płeć/wiek/region są setki, moje wykresy dotyczą zgonów ogółem/kobiet/mężczyzn w podziale na grupy wiekowe oraz ogółem w podziale na województwa. Każdy wykres zawiera dwa szeregi: liczbę zgonów w 2020 roku oraz średnią liczbę zgonów z lat 2015--2019. Ponadto jest wykres z jedną krzywą: procent liczony dla stosownych tygodni jako liczba zgonów w 2020 przez średnią 5 letnią z lat 2015--2019. Ten wykres występuje też w wariancie skróconym: tylko 6 ostatnich tygodni, co pozwala dodać do punktów wartości liczbowe (które nie zachodzą na siebie).

library("ggplot2")
library("dplyr")
library("scales")
library("ggthemes")
library("ggpubr")
library("tidyr")

picWd <- 12
spanV <- 0.5
GUS.url <- "https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/zgony-wedlug-tygodni,39,2.html"
NIKW.url <- "(c) NI-KW @ github.com/knsm-psw/GUS_mortality"
NIKW <- sprintf ("%s | %s", GUS, NIKW.url)

z <- read.csv("PL-mortality-2015.csv", sep = ';',  header=T, na.string="NA" )
lastO <- last(z$date)
lastT <- last(z$week)

nuts <- c('PL21', 'PL22', 'PL41', 'PL42', 'PL43', 'PL51', 'PL52', 'PL61', 'PL62',
'PL63', 'PL71', 'PL72', 'PL81', 'PL82', 'PL84', 'PL91', 'PL92')

### Ogółem
z00 <- z %>% filter ( sex == 'O'  & geo == 'PL' ) %>% as.data.frame

z0 <- z00 %>% filter ( year >= 2015  & year < 2020 ) %>% as.data.frame
z1 <- z00 %>% filter ( year == 2020 ) %>% as.data.frame

## średnie w okresie 1 -- (n-1)
zz0 <- z0 %>% group_by(age,week) %>% summarise( year = 't19',
  vv = mean(value, na.rm=TRUE)) %>% as.data.frame
zz1 <- z1 %>% group_by(age,week) %>% summarise( year = 't20',
  vv = mean(value, na.rm=TRUE)) %>% as.data.frame
### Połącz
zz1 <- bind_rows(zz0, zz1)

farbe19 <- '#F8766D'
farbe20 <- '#00BFC4'

p1 <- ggplot(zz1, aes(x=week, y=vv, color=year)) +
 geom_smooth(method="loess", se=F, span=spanV, size=.4) +
 geom_point(size=.4, alpha=.5) +
 facet_wrap( ~age, scales = "free_y") +
 xlab(label="") +
 ylab(label="") +
 ##theme_nikw()+
 theme(plot.subtitle=element_text(size=9), legend.position="top")+
 scale_color_manual(name="Rok: ", labels = c("średnia 2015--2019", "2020"), values = c("t19"=farbe19, "t20"=farbe20 )) +
 ggtitle("Zgony wg grup wiekowych (PL/Ogółem)", subtitle=sprintf("%s | ostatni tydzień: %s", NIKW, lastO) )

ggsave(plot=p1, "zgony_PL_by_age_O.png", width=picWd)

### M ###
z00 <- z %>% filter ( sex == 'M'  & geo == 'PL' ) %>% as.data.frame

z0 <- z00 %>% filter ( year >= 2015  & year < 2020 ) %>% as.data.frame
z1 <- z00 %>% filter ( year == 2020 ) %>% as.data.frame

## średnie w okresie 1 -- (n-1)
zz0 <- z0 %>% group_by(age,week) %>% summarise( year = 't19',
  vv = mean(value, na.rm=TRUE)) %>% as.data.frame
zz1 <- z1 %>% group_by(age,week) %>% summarise( year = 't20',
  vv = mean(value, na.rm=TRUE)) %>% as.data.frame
### Połącz
zz1 <- bind_rows(zz0, zz1)

p2 <- ggplot(zz1, aes(x=week, y=vv, group=year, color=year)) +
 geom_smooth(method="loess", se=F, span=spanV, size=.4) +
 geom_point(size=.4, alpha=.5) +
 facet_wrap( ~age, scales = "free_y") +
 xlab(label="") +
 ylab(label="") +
 ##theme_nikw()+
 ##labs(caption=source) +
 theme(plot.subtitle=element_text(size=9), legend.position="top")+
 scale_color_manual(name="Rok: ", labels = c("średnia 2015--2019", "2020"),
   values = c("t19"=farbe19, "t20"=farbe20 )) +
 ggtitle("Zgony wg grup wiekowych (PL/Mężczyźni)", subtitle=sprintf("%s | ostatni tydzień: %s", NIKW, lastO) )

ggsave(plot=p2, "zgony_PL_by_age_M.png", width=picWd)


### K #########################################
z00 <- z %>% filter ( sex == 'K'  & geo == 'PL' ) %>% as.data.frame

z0 <- z00 %>% filter ( year >= 2015  & year < 2020 ) %>% as.data.frame
z1 <- z00 %>% filter ( year == 2020 ) %>% as.data.frame

## średnie w okresie 1 -- (n-1)
zz0 <- z0 %>% group_by(age,week) %>% summarise( year = 't19',
  vv = mean(value, na.rm=TRUE)) %>% as.data.frame
zz1 <- z1 %>% group_by(age,week) %>% summarise( year = 't20',
  vv = mean(value, na.rm=TRUE)) %>% as.data.frame
### Połącz
zz1 <- bind_rows(zz0, zz1)

p3 <- ggplot(zz1, aes(x=week, y=vv, group=year, color=year)) +
 geom_smooth(method="loess", se=F, span=spanV, size=.4) +
 geom_point(size=.4, alpha=.5) +
 facet_wrap( ~age, scales = "free_y") +
 xlab(label="") +
 ylab(label="") +
 ##theme_nikw()+
 ##labs(caption=source) +
 theme(plot.subtitle=element_text(size=9), legend.position="top")+
 scale_color_manual(name="Rok: ", labels = c("średnia 2015--2019", "2020"),
   values = c("t19"=farbe19, "t20"=farbe20 )) +
 ggtitle("Zgony wg grup wiekowych (PL/Kobiety)", subtitle=sprintf("%s | ostatni tydzień: %s", NIKW, lastO) )

ggsave(plot=p3, "zgony_PL_by_age_K.png", width= picWd)

### ogółem wg województw #####################################
n <- read.csv("nuts.csv", sep = ';',  header=T, na.string="NA" )
## dodaj nazwy
z <- left_join(z, n, by='geo')

## wiek razem
z00 <- z %>% filter ( sex == 'O' & geo %in% nuts & age == 'OGÓŁEM') %>% as.data.frame

z0 <- z00 %>% filter ( year >= 2015  & year < 2020 ) %>% as.data.frame
z1 <- z00 %>% filter ( year == 2020 ) %>% as.data.frame

## średnie w okresie 1 -- (n-1)
zz0 <- z0 %>% group_by(name,week) %>%
 summarise( year = 't19', vv = mean(value, na.rm=TRUE)) %>% as.data.frame
 zz1 <- z1 %>% group_by(name,week) %>%
  summarise( year = 't20', vv = mean(value, na.rm=TRUE)) %>% as.data.frame
### Połącz
zz1 <- bind_rows(zz0, zz1)

lastWeek <- last(zz1$week)
firstWeek <- lastWeek - 6

zz1 <- zz1 %>% filter ( week >= firstWeek  ) %>% as.data.frame
print(zz1)

p4 <- ggplot(zz1, aes(x=week, y=vv, group=year, color=year)) +
 geom_smooth(method="loess", se=F, span=spanV, size=.4) +
 geom_point(size=.4, alpha=.5) +
 facet_wrap( ~name, scales = "free_y") +
 xlab(label="") +
 ylab(label="") +
 ##theme_nikw()+
 ##labs(caption=source) +
 theme(plot.subtitle=element_text(size=9), legend.position="top")+
 scale_color_manual(name="Rok: ", labels = c("średnia 2015--2019", "2020"),
   values = c("t19"=farbe19, "t20"=farbe20 )) +
 ggtitle("Zgony wg województw* (PL/Ogółem)", 
   subtitle=sprintf("*wg klasyfikacji NUTS stąd mazowieckie/stołeczne | %s | ostatni tydzień: %s", NIKW, lastO))

ggsave(plot=p4, "zgony_PL_by_woj_O.png", width=picWd)

## jako %% w średniej w poprzednich 5 lat

zz1 <- zz1 %>% spread(year, vv)

zz1$yy <- zz1$t20 / zz1$t19 * 100

p5 <- ggplot(zz1, aes(x=week, y=yy), color=farbe20) +
 geom_smooth(method="loess", se=F, span=spanV, size=.4, color=farbe20) +
 geom_point(size=.4, alpha=.5) +
 facet_wrap( ~name, scales = "fixed") +
 xlab(label="nr tygodnia") +
 ylab(label="%") +
 theme(plot.subtitle=element_text(size=9), legend.position="top")+
 scale_color_manual(name="Rok 2020: ", labels = c("% 2020/(średnia 2015--2015)"),
   values = c("yy"=farbe20 )  ) +
 ggtitle("Zgony wg województw* (PL/Ogółem)", 
   subtitle=sprintf("*wg klasyfikacji NUTS stąd mazowieckie/stołeczne | %s | ostatni tydzień: %s", NIKW, lastO))

ggsave(plot=p5, "zgony_PL_by_woj_P.png", width=picWd)

zz1 <- zz1 %>% filter ( week >= firstWeek  ) %>% as.data.frame

p6 <- ggplot(zz1, aes(x=week, y=yy), color=farbe20) +
 geom_smooth(method="loess", se=F, span=spanV, size=.4, color=farbe20) +
 geom_point(size=.4, alpha=.5) +
 geom_text(aes(label=sprintf("%.1f", yy)), vjust=-1.25, size=1.5) +
 facet_wrap( ~name, scales = "fixed") +
 xlab(label="nr tygodnia") +
 ylab(label="%") +
 theme(plot.subtitle=element_text(size=9), legend.position="top")+
 scale_color_manual(name="Rok 2020: ", labels = c("% 2020/(średnia 2015--2015)"),
   values = c("yy"=farbe20 )  ) +
   ggtitle(sprintf("Zgony wg województw* (PL/Ogółem) tygodnie: %i--%i (%i tydzień zaczyna się %s)",
     firstWeek, lastWeek, lastWeek, lastO), 
   subtitle=sprintf("*wg klasyfikacji NUTS stąd mazowieckie/stołeczne | %s", NIKW))

ggsave(plot=p6, "zgony_PL_by_woj_P6.png", width=picWd)

url | Mon, 23/11/2020 17:26 | tagi: , , , ,