require(ggplot2) require(dplyr) ## ## d <- read.csv("c2018.csv", sep = ';', dec = ",", header=T, na.string="NA"); #d <- read.csv("c2019.csv", sep = ';', dec = ",", header=T, na.string="NA"); rides = nrow (d) total = sum (d$dist) mride = mean (d$dist) ## ## dm <- d %>% mutate(cat = factor(mm)) %>% group_by (cat) %>% summarise( ss = sum(dist, na.rm=TRUE)) %>% as.data.frame p.m <- ggplot(dm, aes(x = cat, y = ss )) + ggtitle(sprintf ("Cycling in 2018 (total: %.1f kms/ %i rides/ %.1f kms per ride)", total, rides, mride)) + xlab("month") + ylab("km") + geom_bar(position = 'dodge', stat = 'identity', fill = "steelblue", alpha=.5) + geom_text(data=dm, aes(label=sprintf("%.0f", ss), y= ss), vjust=1.5, color="white" ) p.m